Symmetric and Non-symmetric Discontinuous Galerkin Methods Stabilized Using Bubble Enrichment
نویسنده
چکیده
In this Note we prove that in two and three space dimensions, the symmetric and non-symmetric discontinuous Galerkin method for second order elliptic problems is stable when using piecewise linear elements enriched with quadratic bubbles without any penalization of the interelement jumps. The method yields optimal convergence rates in both the broken energy norm and, in the symmetric case, the L-norm. Moreover the method can be written in conservative form with fluxes independent of any stabilization parameter. To cite this article: E. Burman and B. Stamm, C. R. Acad. Sci. Paris, vol. 346, num. 1-2, 2008, p. 103-106.
منابع مشابه
A posteriori estimates for the Bubble Stabilized Discontinuous Galerkin Method
with f ∈ L2(Ω), a reaction coefficient τ > 0 and a diffusion coefficient that is piecewise constant on each element and satisfies ε(x) > ε0 > 0. We assume that there exists a constant ρ > 0 such that ε|κ1 6 ρε|κ2 for two elements satisfying ∂κ1 ∩ ∂κ2 6= / 0, i.e. in other words that ε is of bounded variation from one element to the other. The Bubble Stabilized Discontinuous Galerkin (BSDG) was ...
متن کاملLow Order Discontinuous Galerkin Methods for Second Order Elliptic Problems
Abstract. We consider DG-methods for 2nd order scalar elliptic problems using piecewise affine approximation in two or three space dimensions. We prove that both the symmetric and the nonsymmetric version of the DG-method are well-posed also without penalization of the interelement solution jumps provided boundary conditions are imposed weakly. Optimal convergence is proved for sufficiently reg...
متن کاملBubble Stabilized Discontinuous Galerkin Method for Stokes’ Problem
We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the discretization of the Laplace operator is obtained by enriching the space element wise with a non-conforming quadratic bubble. This enriched space allows for a wider range of pressure spaces. We prove optimal convergence estimates and local conservation of both mass and linear momentum independent of...
متن کاملA Unified a Posteriori Error Analysis for Discontinuous Galerkin Approximations of Reactive Transport Equations
Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-Babuška-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution...
متن کاملBubble stabilized discontinuous Galerkin method for parabolic and elliptic problems
In this paper we give an analysis of a bubble stabilized discontinuous Galerkin method (BSDG) for elliptic and parabolic problems. The method consists of stabilizing the numerical scheme by enriching the discontinuous finite element space elementwise by quadratic non-conforming bubbles. This approach leads to optimal convergence in the space and time discretization parameters. Moreover the dive...
متن کامل